home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Sprite 1984 - 1993
/
Sprite 1984 - 1993.iso
/
src
/
lib
/
m
/
atan2.c
< prev
next >
Wrap
C/C++ Source or Header
|
1988-07-11
|
12KB
|
289 lines
/*
* Copyright (c) 1985 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that this notice is preserved and that due credit is given
* to the University of California at Berkeley. The name of the University
* may not be used to endorse or promote products derived from this
* software without specific prior written permission. This software
* is provided ``as is'' without express or implied warranty.
*
* All recipients should regard themselves as participants in an ongoing
* research project and hence should feel obligated to report their
* experiences (good or bad) with these elementary function codes, using
* the sendbug(8) program, to the authors.
*/
#ifndef lint
static char sccsid[] = "@(#)atan2.c 5.2 (Berkeley) 4/29/88";
#endif /* not lint */
/* ATAN2(Y,X)
* RETURN ARG (X+iY)
* DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
* CODED IN C BY K.C. NG, 1/8/85;
* REVISED BY K.C. NG on 2/7/85, 2/13/85, 3/7/85, 3/30/85, 6/29/85.
*
* Required system supported functions :
* copysign(x,y)
* scalb(x,y)
* logb(x)
*
* Method :
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
* 2. Reduce x to positive by (if x and y are unexceptional):
* ARG (x+iy) = arctan(y/x) ... if x > 0,
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
* 3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
* is further reduced to one of the following intervals and the
* arctangent of y/x is evaluated by the corresponding formula:
*
* [0,7/16] atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
* [7/16,11/16] atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
* [11/16.19/16] atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
* [19/16,39/16] atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
* [39/16,INF] atan(y/x) = atan(INF) + atan( -x/y )
*
* Special cases:
* Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
*
* ARG( NAN , (anything) ) is NaN;
* ARG( (anything), NaN ) is NaN;
* ARG(+(anything but NaN), +-0) is +-0 ;
* ARG(-(anything but NaN), +-0) is +-PI ;
* ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
* ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
* ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
* ARG( +INF,+-INF ) is +-PI/4 ;
* ARG( -INF,+-INF ) is +-3PI/4;
* ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
*
* Accuracy:
* atan2(y,x) returns (PI/pi) * the exact ARG (x+iy) nearly rounded,
* where
*
* in decimal:
* pi = 3.141592653589793 23846264338327 .....
* 53 bits PI = 3.141592653589793 115997963 ..... ,
* 56 bits PI = 3.141592653589793 227020265 ..... ,
*
* in hexadecimal:
* pi = 3.243F6A8885A308D313198A2E....
* 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 error=.276ulps
* 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 error=.206ulps
*
* In a test run with 356,000 random argument on [-1,1] * [-1,1] on a
* VAX, the maximum observed error was 1.41 ulps (units of the last place)
* compared with (PI/pi)*(the exact ARG(x+iy)).
*
* Note:
* We use machine PI (the true pi rounded) in place of the actual
* value of pi for all the trig and inverse trig functions. In general,
* if trig is one of sin, cos, tan, then computed trig(y) returns the
* exact trig(y*pi/PI) nearly rounded; correspondingly, computed arctrig
* returns the exact arctrig(y)*PI/pi nearly rounded. These guarantee the
* trig functions have period PI, and trig(arctrig(x)) returns x for
* all critical values x.
*
* Constants:
* The hexadecimal values are the intended ones for the following constants.
* The decimal values may be used, provided that the compiler will convert
* from decimal to binary accurately enough to produce the hexadecimal values
* shown.
*/
#if defined(vax)||defined(tahoe) /* VAX D format */
#ifdef vax
#define _0x(A,B) 0x/**/A/**/B
#else /* vax */
#define _0x(A,B) 0x/**/B/**/A
#endif /* vax */
/*static double */
/*athfhi = 4.6364760900080611433E-1 , /*Hex 2^ -1 * .ED63382B0DDA7B */
/*athflo = 1.9338828231967579916E-19 , /*Hex 2^-62 * .E450059CFE92C0 */
/*PIo4 = 7.8539816339744830676E-1 , /*Hex 2^ 0 * .C90FDAA22168C2 */
/*at1fhi = 9.8279372324732906796E-1 , /*Hex 2^ 0 * .FB985E940FB4D9 */
/*at1flo = -3.5540295636764633916E-18 , /*Hex 2^-57 * -.831EDC34D6EAEA */
/*PIo2 = 1.5707963267948966135E0 , /*Hex 2^ 1 * .C90FDAA22168C2 */
/*PI = 3.1415926535897932270E0 , /*Hex 2^ 2 * .C90FDAA22168C2 */
/*a1 = 3.3333333333333473730E-1 , /*Hex 2^ -1 * .AAAAAAAAAAAB75 */
/*a2 = -2.0000000000017730678E-1 , /*Hex 2^ -2 * -.CCCCCCCCCD946E */
/*a3 = 1.4285714286694640301E-1 , /*Hex 2^ -2 * .92492492744262 */
/*a4 = -1.1111111135032672795E-1 , /*Hex 2^ -3 * -.E38E38EBC66292 */
/*a5 = 9.0909091380563043783E-2 , /*Hex 2^ -3 * .BA2E8BB31BD70C */
/*a6 = -7.6922954286089459397E-2 , /*Hex 2^ -3 * -.9D89C827C37F18 */
/*a7 = 6.6663180891693915586E-2 , /*Hex 2^ -3 * .8886B4AE379E58 */
/*a8 = -5.8772703698290408927E-2 , /*Hex 2^ -4 * -.F0BBA58481A942 */
/*a9 = 5.2170707402812969804E-2 , /*Hex 2^ -4 * .D5B0F3A1AB13AB */
/*a10 = -4.4895863157820361210E-2 , /*Hex 2^ -4 * -.B7E4B97FD1048F */
/*a11 = 3.3006147437343875094E-2 , /*Hex 2^ -4 * .8731743CF72D87 */
/*a12 = -1.4614844866464185439E-2 ; /*Hex 2^ -6 * -.EF731A2F3476D9 */
static long athfhix[] = { _0x(6338,3fed), _0x(da7b,2b0d)};
#define athfhi (*(double *)athfhix)
static long athflox[] = { _0x(5005,2164), _0x(92c0,9cfe)};
#define athflo (*(double *)athflox)
static long PIo4x[] = { _0x(0fda,4049), _0x(68c2,a221)};
#define PIo4 (*(double *)PIo4x)
static long at1fhix[] = { _0x(985e,407b), _0x(b4d9,940f)};
#define at1fhi (*(double *)at1fhix)
static long at1flox[] = { _0x(1edc,a383), _0x(eaea,34d6)};
#define at1flo (*(double *)at1flox)
static long PIo2x[] = { _0x(0fda,40c9), _0x(68c2,a221)};
#define PIo2 (*(double *)PIo2x)
static long PIx[] = { _0x(0fda,4149), _0x(68c2,a221)};
#define PI (*(double *)PIx)
static long a1x[] = { _0x(aaaa,3faa), _0x(ab75,aaaa)};
#define a1 (*(double *)a1x)
static long a2x[] = { _0x(cccc,bf4c), _0x(946e,cccd)};
#define a2 (*(double *)a2x)
static long a3x[] = { _0x(4924,3f12), _0x(4262,9274)};
#define a3 (*(double *)a3x)
static long a4x[] = { _0x(8e38,bee3), _0x(6292,ebc6)};
#define a4 (*(double *)a4x)
static long a5x[] = { _0x(2e8b,3eba), _0x(d70c,b31b)};
#define a5 (*(double *)a5x)
static long a6x[] = { _0x(89c8,be9d), _0x(7f18,27c3)};
#define a6 (*(double *)a6x)
static long a7x[] = { _0x(86b4,3e88), _0x(9e58,ae37)};
#define a7 (*(double *)a7x)
static long a8x[] = { _0x(bba5,be70), _0x(a942,8481)};
#define a8 (*(double *)a8x)
static long a9x[] = { _0x(b0f3,3e55), _0x(13ab,a1ab)};
#define a9 (*(double *)a9x)
static long a10x[] = { _0x(e4b9,be37), _0x(048f,7fd1)};
#define a10 (*(double *)a10x)
static long a11x[] = { _0x(3174,3e07), _0x(2d87,3cf7)};
#define a11 (*(double *)a11x)
static long a12x[] = { _0x(731a,bd6f), _0x(76d9,2f34)};
#define a12 (*(double *)a12x)
#else /* defined(vax)||defined(tahoe) */
static double
athfhi = 4.6364760900080609352E-1 , /*Hex 2^ -2 * 1.DAC670561BB4F */
athflo = 4.6249969567426939759E-18 , /*Hex 2^-58 * 1.5543B8F253271 */
PIo4 = 7.8539816339744827900E-1 , /*Hex 2^ -1 * 1.921FB54442D18 */
at1fhi = 9.8279372324732905408E-1 , /*Hex 2^ -1 * 1.F730BD281F69B */
at1flo = -2.4407677060164810007E-17 , /*Hex 2^-56 * -1.C23DFEFEAE6B5 */
PIo2 = 1.5707963267948965580E0 , /*Hex 2^ 0 * 1.921FB54442D18 */
PI = 3.1415926535897931160E0 , /*Hex 2^ 1 * 1.921FB54442D18 */
a1 = 3.3333333333333942106E-1 , /*Hex 2^ -2 * 1.55555555555C3 */
a2 = -1.9999999999979536924E-1 , /*Hex 2^ -3 * -1.9999999997CCD */
a3 = 1.4285714278004377209E-1 , /*Hex 2^ -3 * 1.24924921EC1D7 */
a4 = -1.1111110579344973814E-1 , /*Hex 2^ -4 * -1.C71C7059AF280 */
a5 = 9.0908906105474668324E-2 , /*Hex 2^ -4 * 1.745CE5AA35DB2 */
a6 = -7.6919217767468239799E-2 , /*Hex 2^ -4 * -1.3B0FA54BEC400 */
a7 = 6.6614695906082474486E-2 , /*Hex 2^ -4 * 1.10DA924597FFF */
a8 = -5.8358371008508623523E-2 , /*Hex 2^ -5 * -1.DE125FDDBD793 */
a9 = 4.9850617156082015213E-2 , /*Hex 2^ -5 * 1.9860524BDD807 */
a10 = -3.6700606902093604877E-2 , /*Hex 2^ -5 * -1.2CA6C04C6937A */
a11 = 1.6438029044759730479E-2 ; /*Hex 2^ -6 * 1.0D52174A1BB54 */
#endif /* defined(vax)||defined(tahoe) */
double atan2(y,x)
double y,x;
{
static double zero=0, one=1, small=1.0E-9, big=1.0E18;
double copysign(),logb(),scalb(),t,z,signy,signx,hi,lo;
int finite(), k,m;
#if !defined(vax)&&!defined(tahoe)
/* if x or y is NAN */
if(x!=x) return(x); if(y!=y) return(y);
#endif /* !defined(vax)&&!defined(tahoe) */
/* copy down the sign of y and x */
signy = copysign(one,y) ;
signx = copysign(one,x) ;
/* if x is 1.0, goto begin */
if(x==1) { y=copysign(y,one); t=y; if(finite(t)) goto begin;}
/* when y = 0 */
if(y==zero) return((signx==one)?y:copysign(PI,signy));
/* when x = 0 */
if(x==zero) return(copysign(PIo2,signy));
/* when x is INF */
if(!finite(x))
if(!finite(y))
return(copysign((signx==one)?PIo4:3*PIo4,signy));
else
return(copysign((signx==one)?zero:PI,signy));
/* when y is INF */
if(!finite(y)) return(copysign(PIo2,signy));
/* compute y/x */
x=copysign(x,one);
y=copysign(y,one);
if((m=(k=logb(y))-logb(x)) > 60) t=big+big;
else if(m < -80 ) t=y/x;
else { t = y/x ; y = scalb(y,-k); x=scalb(x,-k); }
/* begin argument reduction */
begin:
if (t < 2.4375) {
/* truncate 4(t+1/16) to integer for branching */
k = 4 * (t+0.0625);
switch (k) {
/* t is in [0,7/16] */
case 0:
case 1:
if (t < small)
{ big + small ; /* raise inexact flag */
return (copysign((signx>zero)?t:PI-t,signy)); }
hi = zero; lo = zero; break;
/* t is in [7/16,11/16] */
case 2:
hi = athfhi; lo = athflo;
z = x+x;
t = ( (y+y) - x ) / ( z + y ); break;
/* t is in [11/16,19/16] */
case 3:
case 4:
hi = PIo4; lo = zero;
t = ( y - x ) / ( x + y ); break;
/* t is in [19/16,39/16] */
default:
hi = at1fhi; lo = at1flo;
z = y-x; y=y+y+y; t = x+x;
t = ( (z+z)-x ) / ( t + y ); break;
}
}
/* end of if (t < 2.4375) */
else
{
hi = PIo2; lo = zero;
/* t is in [2.4375, big] */
if (t <= big) t = - x / y;
/* t is in [big, INF] */
else
{ big+small; /* raise inexact flag */
t = zero; }
}
/* end of argument reduction */
/* compute atan(t) for t in [-.4375, .4375] */
z = t*t;
#if defined(vax)||defined(tahoe)
z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
z*(a9+z*(a10+z*(a11+z*a12))))))))))));
#else /* defined(vax)||defined(tahoe) */
z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
z*(a9+z*(a10+z*a11)))))))))));
#endif /* defined(vax)||defined(tahoe) */
z = lo - z; z += t; z += hi;
return(copysign((signx>zero)?z:PI-z,signy));
}